Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
qsort1(nil) -> nil
qsort1(.2(x, y)) -> ++2(qsort1(lowers2(x, y)), .2(x, qsort1(greaters2(x, y))))
lowers2(x, nil) -> nil
lowers2(x, .2(y, z)) -> if3(<=2(y, x), .2(y, lowers2(x, z)), lowers2(x, z))
greaters2(x, nil) -> nil
greaters2(x, .2(y, z)) -> if3(<=2(y, x), greaters2(x, z), .2(y, greaters2(x, z)))
Q is empty.
↳ QTRS
↳ Non-Overlap Check
Q restricted rewrite system:
The TRS R consists of the following rules:
qsort1(nil) -> nil
qsort1(.2(x, y)) -> ++2(qsort1(lowers2(x, y)), .2(x, qsort1(greaters2(x, y))))
lowers2(x, nil) -> nil
lowers2(x, .2(y, z)) -> if3(<=2(y, x), .2(y, lowers2(x, z)), lowers2(x, z))
greaters2(x, nil) -> nil
greaters2(x, .2(y, z)) -> if3(<=2(y, x), greaters2(x, z), .2(y, greaters2(x, z)))
Q is empty.
The TRS is non-overlapping. Hence, we can switch to innermost.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
qsort1(nil) -> nil
qsort1(.2(x, y)) -> ++2(qsort1(lowers2(x, y)), .2(x, qsort1(greaters2(x, y))))
lowers2(x, nil) -> nil
lowers2(x, .2(y, z)) -> if3(<=2(y, x), .2(y, lowers2(x, z)), lowers2(x, z))
greaters2(x, nil) -> nil
greaters2(x, .2(y, z)) -> if3(<=2(y, x), greaters2(x, z), .2(y, greaters2(x, z)))
The set Q consists of the following terms:
qsort1(nil)
qsort1(.2(x0, x1))
lowers2(x0, nil)
lowers2(x0, .2(x1, x2))
greaters2(x0, nil)
greaters2(x0, .2(x1, x2))
Q DP problem:
The TRS P consists of the following rules:
QSORT1(.2(x, y)) -> LOWERS2(x, y)
GREATERS2(x, .2(y, z)) -> GREATERS2(x, z)
LOWERS2(x, .2(y, z)) -> LOWERS2(x, z)
QSORT1(.2(x, y)) -> GREATERS2(x, y)
QSORT1(.2(x, y)) -> QSORT1(lowers2(x, y))
QSORT1(.2(x, y)) -> QSORT1(greaters2(x, y))
The TRS R consists of the following rules:
qsort1(nil) -> nil
qsort1(.2(x, y)) -> ++2(qsort1(lowers2(x, y)), .2(x, qsort1(greaters2(x, y))))
lowers2(x, nil) -> nil
lowers2(x, .2(y, z)) -> if3(<=2(y, x), .2(y, lowers2(x, z)), lowers2(x, z))
greaters2(x, nil) -> nil
greaters2(x, .2(y, z)) -> if3(<=2(y, x), greaters2(x, z), .2(y, greaters2(x, z)))
The set Q consists of the following terms:
qsort1(nil)
qsort1(.2(x0, x1))
lowers2(x0, nil)
lowers2(x0, .2(x1, x2))
greaters2(x0, nil)
greaters2(x0, .2(x1, x2))
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
QSORT1(.2(x, y)) -> LOWERS2(x, y)
GREATERS2(x, .2(y, z)) -> GREATERS2(x, z)
LOWERS2(x, .2(y, z)) -> LOWERS2(x, z)
QSORT1(.2(x, y)) -> GREATERS2(x, y)
QSORT1(.2(x, y)) -> QSORT1(lowers2(x, y))
QSORT1(.2(x, y)) -> QSORT1(greaters2(x, y))
The TRS R consists of the following rules:
qsort1(nil) -> nil
qsort1(.2(x, y)) -> ++2(qsort1(lowers2(x, y)), .2(x, qsort1(greaters2(x, y))))
lowers2(x, nil) -> nil
lowers2(x, .2(y, z)) -> if3(<=2(y, x), .2(y, lowers2(x, z)), lowers2(x, z))
greaters2(x, nil) -> nil
greaters2(x, .2(y, z)) -> if3(<=2(y, x), greaters2(x, z), .2(y, greaters2(x, z)))
The set Q consists of the following terms:
qsort1(nil)
qsort1(.2(x0, x1))
lowers2(x0, nil)
lowers2(x0, .2(x1, x2))
greaters2(x0, nil)
greaters2(x0, .2(x1, x2))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 2 SCCs with 4 less nodes.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
GREATERS2(x, .2(y, z)) -> GREATERS2(x, z)
The TRS R consists of the following rules:
qsort1(nil) -> nil
qsort1(.2(x, y)) -> ++2(qsort1(lowers2(x, y)), .2(x, qsort1(greaters2(x, y))))
lowers2(x, nil) -> nil
lowers2(x, .2(y, z)) -> if3(<=2(y, x), .2(y, lowers2(x, z)), lowers2(x, z))
greaters2(x, nil) -> nil
greaters2(x, .2(y, z)) -> if3(<=2(y, x), greaters2(x, z), .2(y, greaters2(x, z)))
The set Q consists of the following terms:
qsort1(nil)
qsort1(.2(x0, x1))
lowers2(x0, nil)
lowers2(x0, .2(x1, x2))
greaters2(x0, nil)
greaters2(x0, .2(x1, x2))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
GREATERS2(x, .2(y, z)) -> GREATERS2(x, z)
Used argument filtering: GREATERS2(x1, x2) = x2
.2(x1, x2) = .1(x2)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
qsort1(nil) -> nil
qsort1(.2(x, y)) -> ++2(qsort1(lowers2(x, y)), .2(x, qsort1(greaters2(x, y))))
lowers2(x, nil) -> nil
lowers2(x, .2(y, z)) -> if3(<=2(y, x), .2(y, lowers2(x, z)), lowers2(x, z))
greaters2(x, nil) -> nil
greaters2(x, .2(y, z)) -> if3(<=2(y, x), greaters2(x, z), .2(y, greaters2(x, z)))
The set Q consists of the following terms:
qsort1(nil)
qsort1(.2(x0, x1))
lowers2(x0, nil)
lowers2(x0, .2(x1, x2))
greaters2(x0, nil)
greaters2(x0, .2(x1, x2))
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
LOWERS2(x, .2(y, z)) -> LOWERS2(x, z)
The TRS R consists of the following rules:
qsort1(nil) -> nil
qsort1(.2(x, y)) -> ++2(qsort1(lowers2(x, y)), .2(x, qsort1(greaters2(x, y))))
lowers2(x, nil) -> nil
lowers2(x, .2(y, z)) -> if3(<=2(y, x), .2(y, lowers2(x, z)), lowers2(x, z))
greaters2(x, nil) -> nil
greaters2(x, .2(y, z)) -> if3(<=2(y, x), greaters2(x, z), .2(y, greaters2(x, z)))
The set Q consists of the following terms:
qsort1(nil)
qsort1(.2(x0, x1))
lowers2(x0, nil)
lowers2(x0, .2(x1, x2))
greaters2(x0, nil)
greaters2(x0, .2(x1, x2))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
LOWERS2(x, .2(y, z)) -> LOWERS2(x, z)
Used argument filtering: LOWERS2(x1, x2) = x2
.2(x1, x2) = .1(x2)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
qsort1(nil) -> nil
qsort1(.2(x, y)) -> ++2(qsort1(lowers2(x, y)), .2(x, qsort1(greaters2(x, y))))
lowers2(x, nil) -> nil
lowers2(x, .2(y, z)) -> if3(<=2(y, x), .2(y, lowers2(x, z)), lowers2(x, z))
greaters2(x, nil) -> nil
greaters2(x, .2(y, z)) -> if3(<=2(y, x), greaters2(x, z), .2(y, greaters2(x, z)))
The set Q consists of the following terms:
qsort1(nil)
qsort1(.2(x0, x1))
lowers2(x0, nil)
lowers2(x0, .2(x1, x2))
greaters2(x0, nil)
greaters2(x0, .2(x1, x2))
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.